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Abstract

We analyze persuasion in a model, in which each receiver might buy a direct access to the sender’s

signal or to rely on her network connections to get it. For the sender, a higher slant increases the impact

per direct receiver, yet diminishes the willingness of agents to receive information. Contrary to naive

intuition, the optimal propaganda might target peripheral, rather than centrally-located agents, and is at

its maximum levels when the probability that information flows between agents is close to zero or nearly

one, but not in-between. The impact of the network density depends on this probability as well.
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1 Introduction

Autocratic governments use propaganda to maintain their grip on power and achieve other goals

(Guriev and Treisman, 2019). Over the years, the Soviet Union has engaged in mass campaigns

to expand literacy, reduce Orthodox church participation, mobilize youth to participate in de-

velopment programs, reduce alcohol consumption and embrace a healthy lifestyle, increase and,

in other time periods, decrease the birth rate, and many others (Service, 2003). In the com-

munist China, mass campaigns were used, in addition to maintaining support for the party and

its leaders, to promote development of individual industrial plants, encourage extermination of

rats, mosquitoes, and sparrows, or spearhead destruction of cultural artifacts (Shapiro, 2001).

In the democratic realm, governments have often used propaganda campaigns to mobilize

population during wars. During World War I, the British government has been using production

of literature and films to increase the support for war both domestically and in the (still neutral)

United States (Taylor, 1999). Currently, the US government finance efforts to nudge people to

sign up for the health insurance provided by the Affordable Care Act (Thaler and Sunstein,

2009). In Afghanistan, the US government has successfully organized information operations to

encourage local population to report road-side bombs and increase support for the reintegration

of former Taliban fighters (Sonin and Wright, 2019).

In this paper, we analyze the limits on propaganda that stems from the existence of infor-

mation networks that connect dictator’s subjects. We do not focus on the spread of opposition

information: the only information that is transmitted through the network is the dictator’s own

signal. The limit on propaganda comes from the incentive constraints of the receivers. If get-

ting information is costly – e.g., the cost is the price of newspaper subscription or simply the

alternative cost of switching on a radio – the signal should be informative enough so that the

receiver would opt to bear the cost. In a network, an agent might receive information from a

neighbor, which reduces her willingness to subscribe. Thus, there is a trade off for any producer

of propaganda: when the signal is more slanted, the impact on those who get information from

them is higher, yet the willingness of agents to become direct receivers is lower.

To analyze the impact of propaganda, we use the basic Bayesian persuasion model (Ka-

menica and Gentzkow, 2011; Bergemann and Morris, 2019; Kamenica, 2019). Relative to other

celebrated communication protocols such as cheap talk in Crawford and Sobel (1982), verifiable

messaging in Milgrom (1981), and signaling in Spence (1973), Bayesian persuasion assumes more

commitment power on behalf of the sender. This makes Bayesian persuasion a natural commu-

nication mechanism in a setup, where the sender’s bias corresponds to censorship of a media
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Figure 1: Sender-optimal equilibria as a function of p. Subscribers are solid blue. The optimal slant is

decreasing on [0, p2) and [p2, p1), and constant, at the maximum level, on [p1, 1].

or a propaganda campaign. Dictators do not edit news in the real time: instead, they appoint

biased editors or establish institutions of censorship to generate the slanted signal (King, Pan

and Roberts, 2013, 2017; Lorentzen, 2014; Rozenas and Stukal, 2019).

There is a single sender who maximizes the expected amount of action by agents connected

in a network. In a political economy setting, this will be, e.g., mobilization in support of a

leader or abstention from the anti-government protest. The sender chooses the information

design without knowing the state of the world – this is a critical element of Bayesian persuasion.

After the sender chooses the information design, receivers compare the cost of getting this

information with the value that information provides to them; less slant makes information

more valuable. Example 1 shows the consequences of the optimal choice by receivers (whether

to buy subscription themselves or to get information for free from their neighbors) and the

sender who optimizes the impact of propaganda in a very simple network.

Example 1. Consider the network in Figure 1. The probability that information passes through

any link connecting two agents is p; there is a non-zero cost of subscribing to the signal. For

different values of p, different levels of slant are optimal. If p is high enough (p > p1), the

sender-optimal structure is such that the slant is at its maximum compatible with an individual

agent buying subscription, the central agent chooses to subscribe, while each of peripheral agents

opt to receive information from the central one. If p is low enough (p < p2), then the impact

is maximized if everyone is a subscriber. Finally, for intermediate values of p, p2 < p < p1,

the sender-preferred equilibrium is such that the slant is below the maximum level, the two

peripheral agents buy subscription, and the central one receives information from them.
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Figure 2: The sender-optimal equilibrium structure for different levels of p. Subscribers are solid.

In Example 1, the sender has to reduce the slant at the intermediate levels of p to make

subscription incentive compatible for peripheral agents. If the central agent buys subscription,

peripheral agents would get information with probability p. If the peripheral agents subscribe,

then the central agent gets information with probability 1− (1− p)2 , which exceeds p whenever

p 6= 0, 1. Therefore, the sender trades off a lower level of slant that induces the desired action to

have a higher probability that the signal reaches every agent. Propositions 1 and 2 demonstrate

this logic in the case of one-way (directed) networks, and Propositions 3 and 4 describe equilibria

in two-way (undirected) networks.

Example 1 show that the sender of propaganda would not necessarily target the centrally

connected individual. In general, when an agent with a high degree of centrality (an “influencer”)

receives information directly, this crowds out the incentives of those who can receive information

from this agent. In Example 2, when the edge probability p is sufficiently low, the sender would

prefer that every peripheral agent becomes a subscriber, yet the central agent, for whom the

incentive compatibility constraint is tighter, does not.1 Proposition 8 provides this result for

any star network.

Example 2. Consider a star network with r peripheral nodes depicted in Figure 2. When

the edge probability p is high, then the naive logic applies: the impact is maximized when the

central agent is a subscriber (solid blue), and other receive information from her. However, when

p is low, it might be optimal for the sender that everyone but the central agent opts to receive

information directly, while the central agent receives information from r peripheral agents.

1Jackson and Yariv (2011) discuss the best-shot public goods game, a game of local public-good provision,
first analyzed by Bramoullé and Kranton (2007) and Galeotti et al. (2010), as an example of network games
with externalities. In a model of information diffusion in a development context, Akbarpour and Jackson (2018)
have effect similar to that in Example 2: the optimal seeding structure might target peripheral, rather than the
centrally connected agents.
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Figure 3: In networks P1 and P ′
1, as well as in networks P2 and P ′

2, each agent has the same number

of links (two and four, resp.). When p is above a certain threshold, the government propaganda is more

effective in P ′
1 and P ′

2. However, in P1, the sender-optimal subscription set is a singleton if and only if

p = 1, while in P ′
2 is a singleton whenever p is larger than some p < 1.

In our model, the immediate consequence of the presence of a network for the sender is that

once citizens rely on each other to receive information, there is less bias that the government

can induce. An increase in the slant reduces the citizens’ incentives to subscribe. As a result, a

more dense social network forces the government to report information more truthfully; this, in

turn, makes authoritarian governments willing to deal with highly granular, atomized polities.

Not surprisingly, many totalitarian regimes discouraged all kind of networking, even strictly

non-political, save for directly state-supervised one (Service, 2003; Roberts, 2018). Proposition

6 illustrates the impact of network density on the optimal slant: a more dense network with the

same frequency of subscribers features lower optimal slant.

Example 3 demonstrates another mechanism through which network structure limits per-

suasion. We compare two networks, with each agent having the same number of links in either

of them, yet networks having different topology. As a result, the sender’s ability to persuade

receivers connected via such networks is different.

Example 3. Consider two pairs of networks in Figure 3: P1 and P
′
1, and P2 and P

′
2. In each

pair, agents have the same number of connections (2 and 4, respectively). In a sender-optimal

equilibrium, it is easier to influence agents’ actions and maintain government support in P1 and

P2. In particular, there exists a threshold p such that for any p > p, the government would

survive for a wider range of parameters with polity P1 than with polity P ′1 and with P2 rather

than P ′2. When p is high enough (not necessarily close to 1), the sender-optimal slant in P1 and

P2 is at the maximum level and each connected component has a unique subscriber. For P ′1, it

is never optimal to have slant at its maximum unless p = 1; for P ′2, again, there exists another

threshold p̃ < 1, such that the maximum slant is optimal for any p > p̃.
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As Example 3 illustrates, the equilibrium subscription structures are drastically different in

P ′1 and P ′2. In P ′1 = Z, for any p, 0 < p < 1, the subscribers are allocated at a regular distance.

The equilibrium is sender-optimal when the distance that is consistent with the subscribers’

incentive compatibility constraint is at the minimum. This distance approaches infinity as p

tends to 1, but it is never infinite unless p = 1. In contrast, in P ′2 = Z2, for any level of

propaganda and cost of subscription, there exists a threshold p̃ < 1 such that for any p > p̃,

there is exactly one subscriber (Proposition 7). Every other agent does not subscribe, expecting

information to reach him with a sufficient probability – regardless of the distance from the unique

subscriber. The reason for this is percolation (Broadbent and Hammersley, 1957): when p is

large enough, there exists, almost surely, a unique infinite cluster of connected nodes. For any

agent in the network, the probability of getting informed is the probability of belonging to this

infinite cluster. As a result, the spread of information, and the limits to propaganda, are very

different in Z and Z2, and, more importantly, in networks which are locally similar to Z and Z2.

Finally, the discussion in Section 7 highlights another important feature of authoritarian

propaganda. The sender’s utility is maximized in two extreme cases. When p is very low,

everyone is a subscriber and very little reduction of the maximum slant is needed to satisfy each

subscriber’s incentive compatibility constraint. When p is close to 1, there is a single subscriber,

so the slant is at the maximum level.

In our model of persuasion on networks, we ignore almost all of the peer effects discussed

in the network literature. (See, e.g., Jackson and Yariv, 2011, and Jackson, Rogers and Zenou,

2016, on the central role of externalities in network analysis.) The only externality that is

present in our model is that a direct access to information by an agent discourages those who

could get information from her to buy access themselves. Still, this parsimonious setup allows

to demonstrate the tension between information diffusion in a network and propaganda efforts

by the sender, and challenge, at least theoretically, the naive wisdom that the agents with a

high degree of network centrality are the most obvious targets of the optimal propaganda.

The rest of the paper is organized as follows. Section 2 provides a brief literature review.

Section 3 contains the setup. Section 4 starts the analysis with the case of directed networks.

Section 5 analyzes undirected networks, while Section 6 relates our results to percolation on

infinite lattices. Section 7 applies the model’s logic to propaganda in non-democratic regimes.

Section 8 concludes, and the Appendix contains technical proofs.
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2 Related Literature

Bayesian Persuasion. Kamenica and Gentzkow (2011) introduced the general notion of

Bayesian persuasion that encompassed many models, in which commitment to information

disclosure serves as a persuasion mechanism (e.g., Aumann and Maschler, 1966; Brocas and

Carrillo, 2007; Ostrovsky and Schwarz, 2010; Rayo and Segal, 2010). Dewatripont and Tirole

(2005) introduced the moral hazard aspect of communication with a conflict of interest be-

tween sender and receiver. Calvó-Armengol, De Mart́ı and Prat (2015) extended their model to

network communication, in a setting very different from what we consider in this paper.

Bayesian persuasion with multiple receivers was considered in Bergemann and Morris (2013,

2019), Mathevet, Perego and Taneva (2020), and Taneva (2019). Alonso and Câmara (2016)

and Kosterina (2018) assume that signals are public, in Wang (2015) signals are independent,

and Arieli and Babichenko (2016), Bardhi and Guo (2018), and Chan et al. (2019) allow for

arbitrary private signals. In Kolotilin (2015, 2018), the persuasion mechanism that the sender

designs relies on private information reported by the receivers. In our model, the persuasion

part is elementary compared to that in any of these papers. Still, it allows us to describe the

limits that the network structure puts on the sender’s persuasion power.

Gentzkow and Kamenica (2014) provide an important connection between the literatures

on Bayesian persuasion and rational inattention (e.g., Sims, 2003). In our model, the receivers

weight the benefits and the costs of having a direct access to information, which makes the un-

derlying intuition somewhat similar to the rational inattention mechanism. In Bloedel and Segal

(2018), a rationally inattentive receiver bears an entropic cost to process the sender’s signals;

the special case of their model with a binary state and state-independent sender preferences is a

deep generalization of our single-receiver version. (Also, see Lipnowski, Mathevet and Wei 2020,

and the follow-up paper Wei 2018). Finally, Matyskova (2018) considers, in a single-receiver

setting, Bayesian persuasion in the case which is “opposite” to ours in the sense that learning

from the sender is free but acquiring additional information about the state is privately costly.

Again, the contribution of this paper is in identifying the impact of the network structure on

persuasion power even if the persuasion problem is very basic.

Information in Networks. We rely on Jackson (2008) as an exhaustive review of the early

literature and an excellent exposition of basic models of information diffusion in networks. Bala

and Goyal (1998) pioneered a model of information diffusion in a network with Bayesian agents.

(See also Acemoglu et al., 2011.) In Golub and Jackson (2010), agents receive independent

6



signals about the true value of a variable and then update their beliefs by repeatedly taking

weighted averages of neighbors’ opinions. Sadler (2020) considers information contagions in

a discrete network with Bayesian players that do not necessarily know the network structure.

In Lipnowski and Sadler (2019), if two players are linked in a network, they get information

about each others’ strategies. (In our model, information flows through a network link with

some probability.) Galperti and Perego (2019) consider a model, in which a designer sends

signals to agents who then communicate in a network before playing the game. In our model,

any two informed agents have the same information, rather than two different signals, and

therefore cannot learn from each other. A more general model would combine the two sets

of assumptions: if, in addition to the signal from the media source, the agents receive private

signals, our qualitative effects will stay the same.

Jackson and Yariv (2011) survey both the non-economics and economics literature on the

role of externalities and diffusion in networks. (Akbarpour and Jackson, 2018, analyze the

dynamics of such diffusion.) Chwe (2000) models people in a coordination game who use a

communication network to tell each other their willingness to participate. Candogan (2019)

considers a setting, in which agents linked a social network take binary actions, with the payoff

of each agent depending, in addition to the underlying state of the world, on the number of

her neighbors who take the sender-optimal action. Unlike Bramoullé and Kranton (2007) and

Galeotti et al. (2010), we do not assume any externalities in actions and payoffs: this allows us to

concentrate on the impact of informational externalities that depend on the network structure.

In a model of information diffusion in a development context, Akbarpour, Malladi and Saberi

(2018) demonstrate that the optimal seeding structure might target peripheral, rather than

centrally connected agents. In our model, information acquisition by a centrally connected agent

crowds out more incentives to acquire information than a similar acquisition by a peripheral

agent. (See Example 1 and Proposition 8.)

Propaganda. In Gehlbach and Sonin (2014), citizens with heterogenous costs of accessing

information, receive it from the censored media. Choosing the level of censorship, the government

trades off the number of media customers and the impact on each agent. In our paper, citizens

might become direct receivers at a cost, yet there is an opportunity to receive information via

their network connections which affects the government ability to influence them.

In Egorov, Guriev and Sonin (2009), while information manipulation is an instrument of

the dictator’s survival, there is a cost in terms of the economic efficiency. Lorentzen considers

a similar efficiency vs. stability trade off in models of strategic protest restrictions (Lorentzen,
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2013) and censorship (Lorentzen, 2014). In Shadmehr and Bernhardt (2015), the state does not

censor modestly bad news to prevent citizens from making inferences from the absence of news

that the news could have been far worse. Guriev and Treisman (2019) propose a theory of the

“informational autocracy”, in which the dictator chooses between repression and propaganda.

(See also Chen, Lu and Suen, 2016 and Huang, 2018). Our model is the first, to the best of

our knowledge, theoretical exercise to interact a propaganda mechanism with a social network

structure.

DellaVigna and Gentzkow (2010) and Prat and Strömberg (2013) are two excellent surveys

on the role of persuasion in politics, with the emphasis on a democratic context. Adena et al.

(2015) and Voigtländer and Voth (2015) analyze the role of propaganda in the rise of Nazis.

Satyanath, Voigtländer and Voth (2017) explore empirically the role of social networks in the

rise of Nazis, but do not analyze the impact of the network structure. Yanagizawa-Drott (2014),

King, Pan and Roberts (2017, 2014), and Chen and Yang (2019) use experimental technique to

analyze empirically propaganda tactics of an authoritarian government. Chen and Yang (2019)

use data on the social network of college dorm roommates for their estimates, but do not use

specifics of the network structure.

Percolation. The notion of (Bernoulli) percolation was introduced in Broadbent and Ham-

mersley (1957). Kesten (1980) completed characterization of critical probability in Zm, which

we use in Section 6. Van Der Hofstad (2010) and Duminil-Copin (2018) are recent mathematical

surveys that we refer to for basic definitions and results on percolation. Jackson (2008) describes

applications of percolation insights to economic issues. We use results from percolation theory

to demonstrate the limits that network structure puts on propaganda power of the government.

3 Setup

We consider an environment with a sender and multiple agents, potential receivers of the infor-

mation provided by the sender, connected via a network. The agents might acquire information

not only from the source controlled by the sender, e.g., a newspaper or a TV channel, directly,

but indirectly from other agents in the network. The network X consists of nodes x ∈ X and

edges (x, y) ∈ E(X). We will assume that X is locally finite; that is, each node belongs to a

finite number of links.

There are two possible states of the world, s ∈ {0, 1}. Each agent x ∈ X has to make,

ultimately, an individual action, ax ∈ {0, 1} , and payoff of each agent depends on the state of
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the world and the agent’s individual action:

ux(ax = 1, s = 1) = 1− q,

ux(ax = 0, s = 0) = q,

ux(ax = 1, s = 0) = ux(ax = 0, s = 1) = 0,

where q ∈ (0, 1). The common prior is P (s = 1) = µ < q, which guarantees that the default

action in the absence of information is ax = 0.

Prior to taking action, each agent x decides whether or not to subscribe to the media that

provides signal ŝ. The signal is structured so that

P (s = 1|ŝ = 1) =
µ

µ+ (1− µ)β
,

P (s = 0|ŝ = 0) = 1,

where β = P (ŝ = 1|s = 0) is the control parameter of the sender. (Kamenica and Gentzkow,

2011 results guarantee that this is the optimal persuasion scheme in this setup.) There is a price

of subscription c, 0 < c < µ. If an agent is indifferent, she subscribes and acts.

With probability p, each agent x gets information from any agent y such that (y, x) ∈ E(X).

This is modeled using the Erdős-Rényi random graph approach (Jackson, 2008). Given network

X, each link disappears with probability 1 − p and information flows through the remaining

links. The original Erdős-Rényi random graph is a particular case of this construction when

X is a complete graph, i.e., each node is connected to every other node.2 We consider both

one-way and two-way flow links (Bala and Goyal 2000).

Definition 1. Given the sender’s choice of β, an equilibrium subscription set on network X

is defined by the subset of subscribers S(X) such that no agent would want to change her

subscription choice: any x ∈ S(X) prefers subscription to no subscription, and any y ∈ X\S(X)

prefers no subscription. Conditional on information, each agent x’s action ax ∈ {0, 1} maximizes

her expected utility.

The sender wants to have the expected amount of action 1 per agent as high as possible.

We will specifically focus on sender-optimal pure strategy Bayes-Nash equilibria, the outcome

of the game with following timing. First, the sender commits to the level of propaganda β, then

2Sonin (2020) considers the setup when X is a complete network. In such a network, every subscriber and
every non-subscriber face the same incentive constraints, which grossly simplifies analysis.
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everything is determined in an equilibrium given β.

We say that network X is linear if it has two vertices of degree 1 and every other vertex has

degree 2, and star if there exists a unique node x such that for any two distinct nodes y1, y2, all

three nodes y1, y2, and x belong to a linear network, and there is at most one node that belongs

to more than one link. (The network in Example 1 is both a linear and a star network.)

Finally, |M | denotes the cardinality of set M.

4 Directed Networks

We start by analyzing economics of propaganda on directed networks, which are relatively

straightforward to study. We use this analysis to develop tools for the analysis of a more general

case, and also to demonstrate the important features of persuasion on networks.

One-way Linear Network. We start our analysis with the case of an infinite linear network,

in which information flows in one direction, X = Z+ = {0, 1, 2, 3, ...}.

In the absence of information, agent x ∈ X chooses ax = 0 and gets the expected payoff of

(1− µ) q. With access to information, the agent’s expected utility is µ (1− q)+(1− µ) (1− β) q.

Thus, the value of information is

V (β) = µ (1− q)− (1− µ)βq.

Agent x = 0 subscribes if and only if V (β) ≥ c. Consider the decision by agent k ∈ {1, 2, 3, ...}

when agent 0 is a subscriber and agents 1, ..., k − 1 do not subscribe. Buying subscription gives

the expected value of V (β)−c. Not buying gives V (β) with probability pk and 0 with probability

1− pk. That is, agent k buys subscription if and only if V (β)− c ≥ V (β)pk, or, equivalently

V (β) ≥ c 1

1− pk
.

The right-hand side is decreasing in k, so there exists K such that

c
1

1− pK
≤ V (β) < c

1

1− pK−1
. (1)

Conditions 1 define K such that agent x = K−1 does not want to be a subscriber, yet agent

x = K does (Figure 4). Then K defines the equilibrium size of the “subscription cell”. The set

of subscribers is S(X) = {nK|n = 0, 1, 2, ...}. Naturally, the size of the cell K = K(β, µ, q, c, p)
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Figure 4: A symmetric equilibrium on a one-way linear network.

is increasing in c and β and is decreasing in µ and p.

The expected action per agent in network X = Z+ is

1

K
(µ+ (1− µ)β)

1− pK

1− p
. (2)

If a network consists of a single agent, the sender-optimal slant can be derived from the

incentive compatibility constraint (V (β)− c ≥ 0) :

βmax =
µ (1− q)− c

(1− µ) q
.

What is the optimal slant on X = Z+? It has to maximize (2) and satisfy
(
1− pK∗

)
V (β∗) =

c, so

β∗ (Z+) =
µ (1− q)− c

(
1− pK∗

)−1
(1− µ) q

.

Note that the optimal level of slant is strictly lower in the case of the linear network than in

the case of a single receiver: β∗ (Z+) < βmax for any p such that 0 < p < 1. It is intuitive: the

presence of other would-be subscribers forces the sender to scale down the slant. This result is

also very general: it extends to any network in which for each node x the probability that x is

reached from “the origin” is strictly positive and the set of subscribers is not a singleton. In such

a network, setting the slant at βmax results in no other subscribers as each agent compares zero

informational rent if she subscribes to a positive cost of subscription. One-way tree networks

and any connected two-way networks are examples of such networks.

The following proposition summarizes the above discussion about persuasion on one-way

linear network.

Proposition 1. Let X = Z+ be a one-way (directed) linear network.

(i) Generically, there exists a unique optimal length of the “subscription cell” K∗ such that

K∗ = arg max
K∈N

{
1

K

(
µ
(
1− pK

)
− c
)}

.
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The optimal slant β∗ = β∗ (Z+) satisfies
(
1− pK∗

)
V (β∗) = c, and maximizes the average

amount of action in the network.

(ii) The subscription cell length K∗ (p) and the optimal slant β∗ (Z+, p) are increasing func-

tions of p : the higher is the probability that the signal passes, the less often the agents buy

subscription, and the higher is the level of slant that the sender chooses.

(iii) The optimal size of the subscription cell K∗ (c) and the level of slant β∗ (Z+, c) are

increasing functions of c : the higher is the cost of subscription, the less often it is bought, and

the higher is the sender-optimal level of slant.

Technically, the comparative statics of parts (ii) and (iii) of Proposition 1 rely on Lemma A2

in the Appendix that demonstrates that (2) satisfies increasing differences condition in (K, p)

and (K, c) and provides the basis for comparative statics with respect to p and c (Milgrom

and Shannon, 1994). Substantively, Proposition 1 features the main trade-off that a sender of

propaganda faces: a higher edge probability results in a higher optimal slant. A higher p does

discourage subscription: the subscription cell becomes longer in equilibrium.

Tree Networks. Consider the network X = Tr, a regular tree; that is, a directed graph with

each node having r > 1 outgoing links. In a study of persuasion, a tree network is interesting for

a number of reasons. First, it is a natural extension of directed path networks: each path through

a tree is isomorphic to a directed linear network. Second, it is a far more realistic approximation

of spread of information through a society than the directed linear network. Finally, this is the

simplest possible network in which, in contrast with the linear network case, there might be

infinitely many agents choosing ax = 1 even when p < 1 and there is a unique subscriber.

What is the sender-optimal level of slant β in a tree network? Each directed path through

a tree is isomorphic to the directed linear network. Define K(β) as in (1). Now, suppose that

β∗ is the optimal level of β. Then, the incentive compatibility constraint should be binding for

K(β∗) :

V (β∗) = c
1

1− pK(β∗)
.

In the r−link network, the average action can be calculated as follows. For any K, the total

number of agents at levels 0, ...,K − 1 from the root is rK−1
r−1 . So, the problem is to maximize

the average actions:
r − 1

rK − 1

1

q

(
µ− c

1− pK

)
(rp)K − 1

rp− 1
.

The next Proposition 2 extends the logic of Proposition 1 to tree networks. Still, there is
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an important new result that relates the optimal slant to the number of tree branches, i.e., the

agents that have a chance to receive information from a single agent (part (ii)).

Proposition 2. Let X = Tr. Suppose that rp > 1.

(i) Generically, there exists a unique K∗(r) such that

K∗ (r) = arg max
K∈N

{
(rp)K − 1

rK − 1

(
1− c/µ

1− pK

)}
.

(ii) The optimal length of the “subscription cell” K∗(r) is an increasing function of r, the

number of outgoing links in each node of regular-tree network X. Also, K∗ is an increasing

function of c, the cost of subscription, and a decreasing function of µ, the ex ante probability of

the sender-desired state.

Technically, the proof of Proposition 2 is similar to that of Proposition 1. If rp > 1, Lemma

A3 guarantees that (4) is single-peaked with respect to K. As in the linear network case, this

guarantees existence of an optimal K∗. The comparative statics rely on Lemma A4, which

asserts that (4) satisfies increasing differences in (K, c), (K,−µ), and (K, r). While Lemma

A4 deals with a continuous function, the monotone comparative statics applies to the discrete

maximization as well.

In addition to extending the results of Proposition 1, Proposition 2 establishes that that the

sender-optimal level of propaganda in an r-arnary tree network increases with r, the number of

outdoing links in each node. As in the case of the linear network in Section 4, the sender trades

off the frequency of subscribers, which requires less slant in the signal, against the impact of the

signal. Now that each subscriber affects r groups similar to one group of the linear network, the

sender chooses a higher slant, putting more weight on persuading those who are reached rather

than on having a higher rate of subscription.

Persuasion and Percolation on Regular Trees. There is a critical difference between

spread of information on a directed linear network and a tree with r ≥ 2. In a linear network, the

probability that a single subscriber results in an infinite number of agents choosing the sender-

preferred action is 0 for any edge probability p < 1. In an r-arnary tree network, this probability

depends on the relationship between p and r. Specifically, if p > 1
r−1 , then a single subscriber

at the root of X = Tr results in infinitely many actions with a non-zero (and non-vanishing!)

probability. Still, despite that there will be infinitely many agents receiving information, the

expected action per agent resulting from a single subscriber at the root of the tree will be zero.
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We will see a qualitatively different result, the infinitely many agents with a positive action per

agent resulting from a unique subscriber when the network is X = Z2 (see Section 6).

5 Two-Way Networks

In this Section, we start with a two-way flow infinite linear network X = Z, the simplest possible

two-way network. Then, we compare the cases X = Z and X = Z2, which are dramatically

different in terms of sender-optimal persuasion.

Infinite Linear Network. Fix any β, 0 ≤ β ≤ βmax. We will focus on symmetric equilibria

on two-way network X = Z; that is, equilibria that have the same number of non-subscribers

between each neighboring pair of subscribers. Proposition 3 establishes existence and provides

an estimate for the difference between the equilibrium with the minimum distance between

subscribers (which is sender-optimal with fixed β) and the maximum.

Proposition 3. Let X = Z be a two-way network, and consider any slant β.

(i) There exist two integer thresholds a = a (p, β, c) and b = b (p, β, c) such that for any

integer d, a ≤ d ≤ b, Sd = {dn|n ∈ Z} is a symmetric equilibrium set of subscribers, and for

any d < a or d > b, Sd is not an equilibrium set.

(ii) The threshold a that defines the sender-optimal equilibrium on X satisfies a ≤
⌊
b
2

⌋
,

where btc denotes the integer part of a real number t.

Part (i) of Proposition 3 is proved in the Appendix. Here we will prove part (ii) as the proof

provides insights into the source of multiplicity of symmetric equilibria in the two-way case.

As in part (i), let a = a (p, β, c) and b = b (p, β, c) be the minimum and the maximum number

of non-subscribers between two subscribers in an equilibrium, respectively. Denote Sb the corre-

sponding set of subscribers, Sb = {(b+ 1)n|n ∈ Z} . Observe that S
b
2 =

{(⌊
b
2

⌋
+ 1
)
n
∣∣n ∈ Z

}
is an equilibrium set of subscribers as well. Indeed, if there were b + 1 agents between two

subscribers, the agent
⌊
b+1
2

⌋
would want to subscribe by construction of b. Since in S

b
2 every

subscriber is in exactly the same position as this
⌊
b+1
2

⌋th
agent in Sb, and the distance between

any two other subscribers is closer in S
b
2 than in Sb, S

b
2 defines a symmetric equilibrium. So,

we just demonstrated that a ≤
⌊
b
2

⌋
.

Naturally, for each β, the sender-optimal equilibrium set of subscribers is Sa as this equilib-

rium features the highest frequency of subscribers. As every non-subscriber may receive infor-

mation from her neighbouring two subscribers only, the minimum distance between subscribers
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guarantees that the probability that information reaches non-subscribers is at the maximum.

The optimal slant on X = Z satisfies c = V (β∗)
(
1− pa∗

)2
, where a∗ = minβ {a (β)} . In higher

dimensions, the story will be very different as the specifics of one-dimensional case is that nobody

could receive any information but from their immediate neighbors (see Section 6).

Finite Linear Network. Part (ii) of Proposition 3 can be used to prove existence of an

equilibrium on a finite linear network, which is a less straightforward exercise. We will use the

same thresholds a = a (p, β, c), the minimum number of non-subscribers between two subscribers

in a symmetric equilibrium on Z, and b = b (p, β, c) , the maximum number. Proposition 3

established that a ≤
⌊
b
2

⌋
.

Consider a finite two-way linear network X and make the left-most agent a subscriber.

Choose b + 2th agent on X to be a subscriber, so that there is no agents who would want to

subscribe between the first and second subscriber. Suppose that there is no such subscriber, i.e.

the number of agents in X, |X|, does not exceed b + 1. If |X| is between a and b, making the

right-most agent a subscriber results in an equilibrium. If the length of the network X is less

than a, and there exists d such that d < a, pd < 1− c
V (β) , make the agent d+ 1 a subscriber. If

there are non-subscribers to the right of d+ 1 who want to subscribe, move the subscriber from

d + 1 right-ward. Since |X| < a, moving a final number of steps will be sufficient, and there

cannot be would-be subscribers in-between the two by construction of a.

Now suppose that we made agents 1, b + 2, ..., l (b+ 1) + 1 subscribers and l is the largest

such number satisfying l (b+ 1) + 1 ≤ |X|. If |X| − l (b+ 1) − 1 < d, this set of subscribers is

equilibrium. If |X| − l (b+ 1)− 1 ≥ a, there is no problem as well: making the right-most agent

a subscriber completes the equilibrium set. If |X| − l (b+ 1)− 1 < a, make agent with number

|X| a subscriber and move subscriber l (b+ 1) + 1 to the left until |X| − l (b+ 1) − 1 = a + 1.

Since a ≤
⌊
b
2

⌋
, the distance between l (b+ 1) + 1 and |X| − l (b+ 1)− 1 exceeds

⌊
b
2

⌋
. Thus, we

ended up with an equilibrium subscription set.3 Formally, one can state the following result.

Proposition 4. Let X be a finite two-way linear network. For any slant β, there exists a

symmetric equilibrium on network X.

6 Persuasion and Information Percolation

In Sections 4 and 5, we built a theory of persuasion on linear networks, extended it to directed

tree networks, in which every path is isomorphic to the linear network, and then to two-way linear

3A similar argument establishes that in any circular network, an equilibrium exists for any β.
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network. However, it appears that a small increase in network dimensionality leads to drastically

different results with respect to persuasion. This is a result of “percolation” (Broadbent and

Hammersley, 1957; Kesten, 1980), the effect that is not present on linear networks, yet plays an

important role whenever the network is similar (locally) to two-dimensional lattice.

We will need some basic definitions and results from percolation theory (Duminil-Copin,

2018). For any (connected) network X and one subscriber x ∈ X, we define the connected

component Cx, a random variable with the values in all subnetworks of X that contain x. The

observed value of Cx is the set of all agents who received information from agent x. Now we can

define the percolation function θ (p) = P (|Cx| =∞) , the probability that the connected cluster

that originated in x contains infinitely many agents.

There is the following central result in the percolation theory: in many networks X, there

exists a critical probability pc = pc (X) ∈ (0, 1) such that for any p < pc, θ (p) = 0 and for

any p > pc, θ (p) > 0 (Kesten, 1980). When the edge probability is lower than the critical

probability, the cluster that starts with a single subscriber is finite with probability 1. Yet when

the edge probability p exceeds the critical threshold pc(X), the infinite cluster forms with a

positive probability θ (p) > 0 which increases with p. For r-regular trees and multidimensional

integer lattices, the function θ (p) is continuous on [0, 1] and is increasing on (pc, 1].

Persuasion in Higher Dimensions. In linear networks, each subscriber’s incentives are

determined by the distance to at most two other subscribers. Now, let us consider the following

important environment, in which this is not the case. Let X be an m−dimensional integer

lattice, in which information flows in both direction on each link. For each m, there exists a

threshold pc (Zm) such that for any p < pc (Zm) , the probability that a cluster that originates

with a subscriber is, in expectation, of a finite size. In this case, construction of a symmetric

equilibrium is relatively straightforward.

Proposition 5. Let X = Zm be an m−dimensional integer lattice, in which information flows

in both direction on each link and suppose p < pc (Zm). For any β, there exists a symmetric

equilibrium.

Proof. Let m = 2. A helpful observation is that if the structure is “symmetric” (see below),

than the value of non-subscription for each subscriber is the same.

Suppose that V (β) ≥ c. We will consider the sequence of sets of potential subscribers Sh,
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h ∈ N. For each h, define the set

S2
h = {(2hl1, 2hl2) , (2hl1 + 1, 2hl2 + 1) |l1, l2 ∈ Z} .

(S2
2 is the right display in Figure 5.) First, for each x ∈ S2

h, the alternative value of subscrip-

tion (the amount of information that she receives from others), vh, is the same. Second, it

is decreasing in h, asymptotically approaching zero. (This is the place where the assumption

p < pc (Zm) is used.) Thus, there exists h∗ such that vh∗−1 > V (β)− c and vh∗ < V (β)− c. To

show that S(X) = S2
h∗ is the equilibrium subscriber set, it is sufficient to demonstrate that any

x ∈ X\S2
h∗ would not want to subscribe. Observe that for any x ∈ X\S2

h∗ , there exists at least

one subscriber who is closer than the distance between two subscribers on S2
h∗−1.

The proof for any m > 2 uses Smh in a similar way.

Let us connect the frequency of subscribers in the network with the sender-optimal slant.

To do this, we will look at networks Zm for different ms. Consider a sequence of lattices Zm,

m = 1, 2, ..., with links {((x1, ...xl, ..., xm) , (x1, ...xl + 1, ..., xm)) | (x1, ...xl, ..., xm) ∈ Zm} , and

the set of subscribers

Sm = {(2l1, 2l2, ..., 2lm) , (2l1 + 1, 2l2 + 1, ..., 2lm + 1) |l1, l2, ..., lm ∈ Z} . (3)

(See Figure 5 for m = 1 and m = 2.)

In the larger dimensions, each non-subscriber is connected to more subscribers. Thus, if the

frequency of subscribers is the same, the slant compatible with the subscription structure should

be lower in higher dimensions. In other words, a network of a higher density puts stricter limits

on the persuasion power of the sender, than a less dense one.

Proposition 6. Let X = Zm, let the set Sm be defined by (3), and let βm be the level of

propaganda that makes Sm the equilibrium subscriber set for each m and guarantees the same

average frequency of subscribers of 1
2 . Then βm is a (strictly) decreasing function of m.4

While Proposition 6 is formulated for the average frequency of subscribers of 1
2 , the results

should be true for other frequencies as well. The reason is that whenever n > m, each agent

has more links to receive information from in Zn than in Zm, and so the incentive compatibility

constraint is satisfied for a lower level of propaganda.

4The incentive compatibility constraint for the non-subscriber is
(
1− (1− p)2m

)
V (β) < V (β) − c, which is

impossible to satisfy simultaneously for every c > 0 and every m ∈ N. That is, the fully rigorous statement
should be as follows. Let m = m (β, c, p) = arg max

{
m|c < V (β) (1− p)2m

}
. Given c, β, and p, βk is a strictly

decreasing function for k ∈ [0,m] .
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Figure 5: Sets of subscribers S1 and S2 (solid blue) in Z and Z2, respectively, result in the same frequency

of subscribers, 1
2 , but the maximum level of slant consistent with S2 is lower.

The Impact of Percolation. Consider again X = Zm. For p < pc (X) , the probability that

one subscriber results in an infinite cluster is θ (p) = 0, which means that the regular structure

described in Propositions 5 and 6 results in a higher expected average action than any one-

subscriber structure. For p > pc (X) , the situation is different: with probability θ(p) > 0, the

cluster C(0) is infinite. In this case, it is possible that choosing βmax results in a higher expected

average action than in any regular structure.

Take m = 2, and consider the subscription structure S2 (see Figure 5). Each neighbor y of

any x ∈ S2 receives information (not counting information from x) with probability 1−(1− p)3 .

Agent x receives information from y with probability p
(

1− (1− p)3
)
. Thus, agent x receives

information from someone with probability

f(p) = 1−
(

1− p
(

1− (1− p)3
))4

,

which is an increasing function of p with f(0) = 0 and f(1) = 1. The incentive compatibility

constraint of the subscriber is satisfied if f(p)V (β) ≤ V (β) − c, and the expected action per

agent is 1
2 (1 + p) 1

q

(
µ− c

1−f(p)

)
, which is non-negative. So, whenever p < pc

(
Z2
)

= 1
2 , this

structure is preferable to that of a finite number of subscribers with βmax.

If p > pc
(
Z2
)

= 1
2 , then S2 is stable as long as

1−
(

1− p
(

1− (1− p)3
))4
≤ 1− c

V (β)
. (4)

Inequality (4) cannot be true for all pairs (c, p), c > 0, p > 0, yet for any p < 1, there exists a
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threshold c(p) > 0 such that (4) holds (and so S2 is stable) for any c < c(p).

When p is below the critical threshold pc
(
Zd
)
, there cannot be an equilibrium with a finite

number of subscribers for any β < βmax. Indeed, each subscriber generates, almost surely, a

cluster of second-hand receivers of a finite size. Thus, there is always an agent far enough from

the any finite group of subscribers that would prefer to subscribe.

When p is above the critical threshold pc
(
Zd
)
, it is possible to have a finite group of sub-

scribers when β < βmax. Indeed, suppose that

θ (p)V (β) > V (β)− c, (5)

where θ (p) is the probability that an infinite cluster forms; θ (p) continuously maps
[
1
2 , 1
]

onto

[0, 1]. As p > pc
(
Zd
)
, the ergodicity implies that for any node x ∈ Zd, θ (p) is the probability

that x belongs to the cluster that originates with the single subscriber (Duminil-Copin, 2018).

That is, the probability that information reaches x is at least θ (p) , which makes her unwilling

to subscribe. Therefore, we can state the following formal result.

Proposition 7. Let X = Zd, d ≥ 2, and suppose that p > pc
(
Zd
)
. Then, for any β such that

V (β) < c
1−θ(p) , any equilibrium has a unique subscriber. Vice versa, for any x ∈ X, S(X) = {x}

is an equilibrium set of subscribers.

Proposition 7 stands in a sharp contrast with the case of X = Z, in which a unique subscriber

is possible only when β = βmax. In any network, if the choice of the sender is over equilibrium

structures with a unique subscriber, the sender-optimal choice is βmax.

If p > pc
(
Zd
)
, but (5) is not fulfilled, then finite equilibrium groups of subscribers with

β < βmax might not exist for another reason. Indeed, suppose there is a finite number of

subscribers. Each of them generates an infinite cluster with probability θ (p) . Because of the

Kolmogorov zero-one law, there exists, almost surely, exactly one infinite cluster. For any non-

subscriber x the probability of getting information is close to θ (p) , the probability to belong to

the unique infinite cluster, which means that she will be willing to be another subscriber. Thus,

for any finite number of subscribers, there always exists a non-subscriber who would want to

subscribe. As a result, any equilibrium should include an infinite number of subscribers. Still,

this argument is correct if and only if subscribers cannot “block” each other; that is, there exist

infinite connected paths that consist of non-subscribers only. If this assumption is violated (as

in S2 on Picture 5), there might exist an equilibrium with infinitely many subscribers.
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7 Optimal Propaganda

In this Section, we apply the results discussed in the previous sections to the issue of optimal

propaganda. Specifically, we will discuss the role of “influencers”, the agents that have a high

degree of centrality in a network.

The Dictator’s Preference over Network Characteristics. Our first observation about

propaganda is almost trivial. If the sender takes the probability p as given, his optimal choice

is a function of p. As Example 1 demonstrated, this choice is non-monotonic, resulting in the

maximum slant for very low or very high values of p and p. Thus, if the sender has a choice of

the edge probability p, atop of the optimal choice of slant after choosing p, then the optimal

choice of p is either p∗ = 0 or p∗ = 1, and the propaganda level is at its maximum:

β∗ = βmax =
µ (1− q)− c

(1− µ) q
.

By choosing p∗ = 0, the government forces everyone to buy subscription. Then, choosing

β∗ = βmax maximizes the expected average amount of individual action, which is equal to

µ + β∗ (1− µ) = µ + c−µ(1−q)
q = 1

q (µ− c) . This result is true regardless of whether or not the

network X is directed or undirected.

Alternatively, p∗ = 1, and in a two-way network there will necessary be a single subscriber.

Again, choosing β∗ = βmax maximizes the expected average amount of individual action, which

is the same as in the case of p∗ = 0. In a directed (one-way) network, the result is more subtle:

it is still optimal to have p∗ = 1, yet there should be an additional condition on the network

X : there must be a “root” for any infinite sequence of one-way links. (Otherwise, the one way

network X = Z is a counterexample: if p = 1, there is no pure-strategy equilibrium for any β.)

In a one-way network, there might be more than one subscriber even if p = 1.

Both of the two extreme edge probabilities, p∗ = 0 or p∗ = 1, result in a sender-optimal

equilibrium. Still, the regime of p∗ = 0, under which the government chooses to shut up all

the channels of information exchange, forcing everyone to subscribe to propaganda, is different

from that of p∗ = 1, the regime of unrestricted networking. Let us focus on a two-way network.

Suppose that the opportunity cost of subscription for each agent x ∈ X is a random variable.

Then, with p∗ = 0, choosing any β∗ would result in a different fraction of agents becoming

subscribers. With p∗ = 1, the impact of propaganda is higher: optimal β∗ should maximize

the probability that the minimum of agents’ costs is such that the incentive constraint for the
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subscriber is satisfied.

Even if the government chooses p, the impact is still limited by agents intrinsic aversion to

do the sender-preferred action a = 1, q, or by the ex ante probability µ that they attach to the

state when action a = 1 is receiver-preferred. Trivially, if the government has means to lower c,

the cost of subscription, the impact will always be higher.

The Role of a Centrally Connected Agent. Consider a simple star network, i.e., a tree

network with a single root and branches of length 1. Locally, any network in which there cannot

be more than one link between nodes is a star network. The naive intuition would suggest that

the sender always prefers that the central agent is a subscriber and then information is “spread”

to periphery. However, this argument does not take into account the negative externality: when

the central agent subscribes, this crowds out the peripherals’ incentives to subscribe (and thus

diminishes the probability of action).

Proposition 8. Let X be a star network that connects r + 1 agents.

(i) There exist thresholds 0 < pr ≤ ... ≤ p1 < 1 such that for any p ∈
[
pk, pk−1

]
, there are

exactly k agents who subscribe in a sender-optimal equilibrium.

(ii) The sender-optimal slant β∗ (p) is strictly decreasing over each interval
[
pk, pk−1

]
, k =

1, ..., r + 1. It is constant, β∗ (p) = βmax, on [p1, 1] .

(iii) The central agent is a subscriber in a sender-optimal equilibrium if and only if either

p ≤ pr, or p ≥ p1

Part (i) implies that the set of subscribers in the sender-optimal equilibrium (weakly) shrinks

with p. When p is close to zero, the incentive compatibility constraint is not binding for every

subscriber. The first subscriber to have the constraint binding is the agent at the center of

the star X : so, the first threshold pr is determined by this constraint. Indeed, when all

peripheral agents is the set of subscribers, the probability that one peripheral agent receives

information from other r − 1 peripheral agents is p
(

1− (1− p)r−1
)
, where 1 − (1− p)r−1 is

the probability that the central agent received a signal from these agents. So, the incentive

compatibility constraint for the subscriber yields the probability that the signal is s = 1 of

µ + (1− µ)β = 1
q

(
µ− c

1−p(1−(1−p)r−1)

)
, and the total expected amount of action is equal

to (r + (1− (1− p)r)) 1
q

(
µ− c

1−p(1−(1−p)r−1)

)
. Then, the threshold pr is determined by the
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equation

(r + 1)

(
µ− c

(1− p)r
)

= (r + (1− (1− p)r))

µ− c

1− p
(

1− (1− p)r−1
)
 . (6)

The left-hand side is the total expected action when all r+1 agents are subscribers; the optimal

slant comes from the central agent’s incentive compatibility constraint.

Proposition 8 extends to any two-way tree. When p is close to 1, there is no chance to satisfy

the incentive constraint for more than one subscriber. In this situation, it is better to have

the central agent (the root) to subscribe. When p = 0, then everyone is a subscriber; with p

increasing from zero, the nodes with high centrality are the first to drop from the subscriber set.

Proposition 8 challenges the conventional wisdom about targeting “influencers”, agents with

a high degree of centrality. When p is low, they are the worst possible target for influence.

This effect is not confined to our particular setup: e.g., suppose that the government is choosing

to allocate one free subscription in a star network, and the cost of subscription cx is random,

say cx ∼ U [0, 2c]. When p is high, the optimal allocation of the free subscription is the central

agent. However, if p is relatively low, the government has to take into account the crowding-out

effect. Allocating free subscription to a peripheral agent will have less of a crowding out effect:

there will be a higher probability that peripheral agents become subscribers on their own. This

result extends to any network: provided that an equilibrium exists, agents with high degree of

centrality may not be the optimal direct receivers from the sender’s standpoint. Instead, she

would prefer to have agents with low degree of centrality to be the subscribers.

Discussion. The above results allows to discuss the relationship between the network structure

and the government’s ability to maintain support. Consider networks in Figure 3. In both

polities P1 and P
′
1 each agent is connected to two others, yet the network architecture is different,

and the government’s ability to maintain support depends on both the architecture and p. In

polities P2 and P
′
2, each agent has four connections. In a sender-optimal equilibrium, it is

typically, although not always, easier to influence agents’ actions and maintain government

support in P1 and P2. In particular, there exists a threshold p such that for any p > p, the

government survives for a wider range of parameters with polity P1 than with polity P ′1 and

with P2 rather than P ′2. When p is high enough (not necessarily close to 1), each connected

component will have a unique subscriber and the sender-optimal level of propaganda will be

β∗ (p) = βmax in both in P1 and P2. In contrast, for P ′1, it is never optimal to have propaganda at
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its maximum unless p = 1. For P ′2, there exists another threshold p̃ < 1, such that β∗ (p) = βmax

for any p > p̃.

Galperti and Perego (2019) demonstrate that a “deeper” network worsens the designer ability

to manipulate beliefs of the networked receivers, with a complete network being the deepest

possible network. In our random graph setup, the impact of network’s “depth” depends, non-

monotonically, on p. While for sufficiently high probabilities p, the sender prefers P1 (a locally

more deep network) to P ′1 and P2 to P ′2, there is a range of ps for which the sender’s preference

is reversed. If the government has the ability to alter the network architecture (keeping the

number of links constant), the following simple observation is true. For any p, there exists a

division of network P1 into m-nodes wheels (P2 consists of 3-nodes wheels) so that the resulting

structure (weakly) increases the amount of support that the government receives.

Finally, our main results are robust to the amount of information about the structure of

network that the agents possess. In our model, the agents who make the subscription decision

know the exact structure of the network. However, the main insights will stay intact if agents

would know their own number of links and the distribution of links overall. (Such models are

discussed in, e.g., Galeotti et al., 2010 and Sadler, 2020.) Unlike in the local public goods

games (Bramoullé and Kranton, 2007; Galeotti et al., 2010), agent’s decision to subscribe in

equilibrium is not necessarily monotonic in the agent’s degree. Still, when p is sufficiently low,

it is monotonic in the sender-optimal equilibrium, which looks as follows: all agents with a node

degree smaller than some threshold K∗ will be subscribers, those agents with node degrees higher

than K∗ will be non-subscribers, and the agents with the degree equal to K∗ will subscribe with

a certain probability. As in our main model, agents with a high degree of centrality are not

sender-preferred targets of propaganda.

8 Conclusion

We consider an environment in which agents that are influenced by a sender who has committed

to a certain information design face the following trade-off: subscribe, as a cost, to the news

source and be sure to receive payoff relevant information or rely on network neighbors which

might or might not pass the information. Our setup is the simplest possible model of Bayesian

persuasion with multiple receivers who are linked in a network. In equilibrium, a subscriber

crowds out the incentives to subscribe of those who could get information from her. A higher

slant chosen by the sender increases the probability that those who receive signal would do

what the sender wants, but further reduces agents’ willingness to subscriber. When the network
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is dense, optimal propaganda needs to be less biased, because otherwise the subscription rate

would fall. The sender might be interested in peripheral, rather than centrally connected agents

subscribing to information. Adding the possibility that agents could strategically share their

signals or exchange information that is harmful to the sender would be an interesting extension,

yet will leave the main effects identified in our paper in place.
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Appendix

Algebra for Example 1

There are 3 possible cases.

(1) If the central agent is a subscriber and the peripheral agents receive information from

her, then for the optimal level of propaganda β∗ = βmax, one has µ + (1− µ)β∗ = 1
q (µ− c) ,

and the expected total action is
1

q
(µ− c) (1 + 2p) . (A1)

(2) If the peripheral agents are subscribers, and the central agent is the second-hand receiver,

than the optimal amount of propaganda satisfies p2V (β) = V (β)− c (otherwise, one of the two

peripheral agents would drop subscription) so that µ + (1− µ)β∗ = 1
q

(
µ− c

1−p2

)
. Then, the

expected total action is
1

q

(
µ− c

1− p2

)
(2 + (2− p) p) . (A2)

(The central agent receives information with probability 1− (1− p)2 = (2− p) p > p2.).

It is straightforward, that (A2) exceeds (A1) when p is low and vice versa if p is relatively

larger.

(3) All three agents are subscribers. Then, β should be such that (2− p) pV (β) ≤ V (β)− c

as the central agent is the least willing to subscribe. Then µ + (1− µ)β∗ = 1
q

(
µ− c

(1−p)2

)
.

Then the expected amount of action is

1

q

(
µ− c

(1− p)2

)
3. (A3)

Denote a = c/µ and compare three functions:

f1(p) = (1 + 2p) (1− a) ,

f2(p) = (2 + (2− p) p)
(

1− a

1− p2

)
,

f3(p) = 3

(
1− a

(1− p)2

)
.

Observe that f1 (0) < f2(0) < f3(0), f ′3(p) < 0 for any p ∈ (0, 1) , f ′2(0) > 0, and that limp→1 f2 =

limp→1 f3 = −∞ for any a [that satisfies the standard conditions in the model]. This implies

that there exist thresholds p1 and p2 such that for any p ∈ (0, p1) , (A3) provides the highest

pay-off for the sender and for any p ∈ (p2, 1) , the sender’s payoff is (A1).
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Let’s consider p = 1
2 . The value of each of the three functions is a function of parameter a:

f1

(
1

2

)
= 2− 2a,

f2

(
1

2

)
=

11

4
− 11a

3
,

f3

(
1

2

)
= 3− 12a.

It is straightforward to check that if a ∈
(

3
100 ,

9
200

)
, f2

(
1
2

)
> max

{
f1
(
1
2

)
, f3
(
1
2

)}
. �

Algebra for One-Way Linear Network

To calculate the expected average action by all agents in X, take any m. Suppose, for now, that

m is a multiple of K, m = lK. Then the amount of action among m agents is

m

K
(µ+ (1− µ)β)

1− pK

1− p
.

Now, the expected average action is

lim
m−→∞

1

m

(
m

K
(µ+ (1− µ)β)

1− pK

1− p

)
=

1

K
(µ+ (1− µ)β)

1− pK

1− p
.

(So, we effectively replaced limm−→∞
1
m by liml−→∞

1
lK . )

Lemma A1. Suppose that α ∈ (0, 1). Then function ϕ(t) = 1
t

(
α− pt

)
is single-peaked on

[0,+∞).

Proof. Take a derivative:

ϕ′(t) =
−ptt ln p− α+ pt

t2
.

Let φ(t) = −ptt ln p−α+pt
pt = −t ln p− α

(
1
p

)t
+ 1. It is sufficient to show that there exists some t0

such that φ(t) > 0 for any t ∈ [0, t0) and φ(t) < 0 for any t ∈ (t0,+∞). Since p < 1, 1−α
(
1
p

)t
is

a negative of an exponential function; it crosses y-axis at 1− α > 0. The linear function −t ln p

crosses y-axis at 0 (below 1− α) and then have a single crossing with 1− α
(
1
p

)t
.

Lemma A2. Function 1
t

(
µ
(
1− pt

)
− c
)

satisfies increasing differences condition in (t, p) and

(t, c).
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Proof.

∂

∂p

1

t

(
µ
(
1− pt

)
− c
)

=
1

t

(
−µpt−1t

)
= −µpt−1,

∂2

∂p∂t

1

t

(
µ
(
1− pt

)
− c
)

= −pt−1µ ln p > 0;

∂

∂c

1

t

(
µ
(
1− pt

)
− c
)

= −1

t
,

∂2

∂c∂t

1

t

(
µ
(
1− pt

)
− c
)

=
1

t2
> 0.

Lemma A3. Suppose that rp > 1. Then there exists a threshold t ∈ (0, 1) such that the function

ϕ (t, r) = (rp)t−1
(rt−1)

(
1− c/µ

1−pt

)
increases on

(
0, t
)

and decreases on
(
t, 1
)
.

Proof.

d

dt

(rp)t − 1

(rt − 1)
=

(
(rp)t − 1

)
(ln rp− ln r)

(rt − 1)

=

(
(rp)t − 1

)
ln p

(rt − 1)

d

dt

(
1− c/µ

1− pt

)
= − (c/µ)

pt ln p

(1− pt)2

d

dt

(rp)t − 1

(rt − 1)

(
1− c/µ

1− pt

)
=

(
(rp)t − 1

)
ln p

(rt − 1)

(
1− c/µ

1− pt

)
− (rp)t − 1

(rt − 1)
(c/µ)

pt ln p

(1− pt)2

The above derivative is positive if and only if

(
(rp)t − 1

)
ln p

(
1− c/µ

1− pt

)
−
(
(rp)t − 1

)
(c/µ)

pt ln p

(1− pt)2
> 0

as rt − 1 > 0 for any t > 0. This is equivalent to

(
(rp)t − 1

)(
1− c/µ

1− pt

)
−
(
(rp)t − 1

)
(c/µ)

pt

(1− pt)2
< 0

as ln p < 0. Finally, the above condition is equivalent to(
1− c/µ

1− pt

)
− (c/µ)

pt

(1− pt)2
< 0
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as long as (rp)t − 1 > 0, which in turn is true if and only if rp > 1.

(
1− pt

)2 − (c/µ)
(
1− pt

)
− (c/µ) pt < 0(

1− pt
)2

< c/µ.

The LHS is monotonically increasing in t (and asymptotically approach 1) on (0, 1) .

Lemma A4. Suppose that rp > 1. Then function ϕ(t) = ϕ(t|r, c, µ) satisfies increasing differ-

ences in (t, c), (t,−µ), and (t, r).

Proof. Let us demonstrate that

d2

dtd (c/µ)

(rp)t − 1

(rt − 1)

(
1− c/µ

1− pt

)
> 0.

d

d (c/µ)

(rp)t − 1

(rt − 1)

(
1− c/µ

1− pt

)
= −(rp)t − 1

(rt − 1)

1

1− pt

d2

dtd (c/µ)

(rp)t − 1

(rt − 1)

(
1− c/µ

1− pt

)
=

d

dt

(
−(rp)t − 1

(rt − 1)

1

1− pt

)

= −
(
(rp)t − 1

)
(ln rp− ln r)

(rt − 1)

1

1− pt
− (rp)t − 1

(rt − 1)

pt ln p

(1− pt)2
.

As rp > 1, we can divide by (rp)t − 1, multiply by rt − 1 and 1− pt, so the above expression is

positive if and only if

− ln p− pt ln p

1− pt
> 0

if and only if

− ln p(1− pt)− pt ln p > 0,

which is in turn equivalent to

− ln p > 0,

which is always true.

Let us prove that
d2

dtdr

(rp)t − 1

(rt − 1)

(
1− c/µ

1− pt

)
> 0.
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Calculate

d

dr

(rp)t − 1

(rt − 1)

(
1− c/µ

1− pt

)
=

(
1− c/µ

1− pt

)
d

dr

(rp)t − 1

(rt − 1)

=

(
1− c/µ

1− pt

)
d

dr

tp (rp)t−1

trt−1

=

(
1− c/µ

1− pt

) (tp (rp)t−1
) (
rt − 1

)
− trt−1

(
(rp)t − 1

)
(rt − 1)2

=
(
1− pt − c/µ

) trt−1

(rt − 1)2
.

Now

d

dt

(
1− pt − c/µ

) trt−1

(rt − 1)2
= −pt ln p

trt−1

(rt − 1)2

+
(
1− pt − c/µ

) rt−1 (t ln r + 1)
(
rt − 1

)2 − 2trt−1
(
rt − 1

)
rt ln r

(rt − 1)4

= −pt ln p
trt−1

(rt − 1)2
+
(
1− pt − c/µ

)
rt
rt − 1 +

(
rt + 1

)
t ln r

r (rt − 1)3

We will create another, sign-equivalent function:

ω(r, t) = −ptt ln p+
(
1− pt − c/µ

) rt − 1 +
(
rt + 1

)
t ln r

rt − 1

If
(
1− pt − c/µ

)
> 0, then ω(r, t) > 0 which means that d2ϕ(t,r)

dtdr > 0. But 1 − pt − c
µ > 0 is

equivalent to µ − c
1−pt > 0, which is always true (our model is solved when this assumption is

fulfilled).

Proof of Proposition 3

(i) We will prove that there exists an m ∈ Z+ such that the set Sm = {mn|n ∈ Z} is an

equilibrium subscription set. We need to find m such that, if Sm is a subscriber set, then, for

any x ∈ Sm, the IC constraint looks as follows:

(
1− (1− pm)2

)
V (β) ≤ V (β)− c

or

2pm − p2m ≤ A, (A4)
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if we denote A = 1 − c
V (β) and note that 1 − (1− pm)2 = 2pm − p2m. If such m exists, we will

need to check whether or not the IC constraint is satisfied for every non-subscriber as well.

Observe that the function ϕ (x) = 2px − p2x is non-negative, single-peaked on [0,+∞) , and

is converging to 0 when x approaches +∞.

Start with the case when A > arg maxm≥0
{

2pm − p2m
}
. Then S0 is an equilibrium sub-

scription set; everyone is a subscriber.

Now, suppose that A ≤ arg maxm≥0
{

2pm − p2m
}
. The fact ϕ (x) is converging to zero

guarantees that the set
{
m|2pm − p2m ≤ A

}
is non-empty. Takem∗ = min

{
m|2pm − p2m ≤ A

}
.

What remains to check is that if Sm
∗

is the subscriber set, than for any x /∈ Sm∗ , the incentive

constraint is satisfied.

Suppose, on the contrary, that there exists an x ∈ Z, 0 < x < m (so distance to the next

left-ward subscriber, 0, is x, and to the next right-ward subscriber, m, is m − x) such that

1 − (1− p)x (1− p)m−x = px + pm−x − pm ≤ A. Without loss of generality x ≥ m − x. Then

pm−x ≤ px as p ≤ 1, and therefore pm−x (1− pm−x) ≤ px (1− pm−x) = px − pm−x. This yields

2pm−x − p2(m−x) ≤ px + pm−x − pm ≤ A,

which contradics the choice of m∗ as the minimal integer satisfying (A4).

(ii) is demonstrated in the text. �
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